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Abstract Relying on a convenient logical representation of regulatory networks, we

propose a generic method to qualitatively model regulatory interactions in the standard

elementary and coloured Petri net frameworks. Logical functions governing the behaviours

of the components of logical regulatory graphs are efficiently represented by Multivalued

Decision Diagrams, which are also at the basis of the translation of logical models in terms

of Petri nets. We further delineate a simple strategy to sort trajectories through the

introduction of priority classes (in the logical framework) or priority functions (in the Petri

net framework). We also focus on qualitative behaviours such as multistationarity or

sustained oscillations, identified as specific structures in state transition graphs (for logical

models) or in marking graphs (in Petri nets). Regulatory circuits are known to be at the

origin of such properties. In this respect, we present a method that allows to determine the

functionality contexts of regulatory circuits, i.e. constraints on external regulator states

enabling the corresponding dynamical properties. Finally, this approach is illustrated

through an application to the modelling of a regulatory network controlling T lymphocyte

activation and differentiation.
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1 Introduction

Most essential cellular processes are controlled by regulatory networks involving diverse

regulatory interactions, e.g. transcriptional regulations of target genes, protein modifica-

tions, diffusion and sequestring of signalling molecules. Due to the growing complexity of

these networks, proper understanding of their dynamical properties requires the develop-

ment of adequate formal representations, as well as efficient modelling and analysis tools.

Approaches generally used to model such regulatory networks include graph theory,

Boolean networks, differential equations, or yet stochastic equations (see reviews in de

Jong 2002; Schlitt and Brazma 2007). It is worth noting that current data on the molecular

processes governing regulatory interactions remains largely qualitative. Indeed, precise

information on kinetic parameters or concentration levels are often lacking. This is par-

ticularly true for the regulation of gene expression, as the role of a regulatory product is

often just characterised as activating or inhibiting a target gene in a given context. The

semantics associated with biological interactions varies: while in a chemical reaction, the

reactants are consumed, the expression levels of a transcriptional regulator seldomly

change during the regulatory process. One successful approach to qualitatively model such

regulatory networks is the logical method initially developed by Thomas and co-workers

(Thomas and D’Ari 1990; Thomas 1991; Thomas et al. 1995; Chaouiya et al. 2003) (see

also the related approach in Kauffman 1993). Indeed this method was productively used to

model a diversity of regulatory interactions, beyond transcriptional genetic regulation, as

demonstrated in Fauré et al. (2006, 2009), González et al. (2008), and Sánchez et al.

(2008). However, we face a classical combinatorial explosion when we analyse large

networks. This is one of the motivations that drove us to propose a systematic translation of

logical regulatory models into Petri nets (PNs), to take advantage of the corresponding

simulation and analysis tools. Another interesting prospect of the PN representation of

regulatory networks lies in the coupling of metabolic pathways with regulatory processes

acting upon these pathways (see Simão et al. 2005) for a first step in this direction).

Finally, PNs open the way to quantitative extensions, e.g. adding deterministic or sto-

chastic rates on the transitions, assigning non-negative real values to places (Goss and

Peccoud 1998; Srivastava et al. 2001; Mura and Csikasz-Nagy 2008; Heiner et al. 2008),

or considering hybrid models (Nagasaki et al. 2004; Doi et al. 2006).

So far, PNs have been mainly employed to model and analyse metabolic networks, since

PNs are well adapted to the representation of the consumption/production semantics

related to chemical reactions. The representation of a regulatory relation by means of

standard PNs is less straighforward. Section 2 introduces the logical approach for the

modelling of regulatory networks. This allows us to define the representation of logical

regulatory graphs by means of standard or coloured PNs (Sect. 3). One strategy to ease the

analysis of large regulatory networks consists in cutting irrelevant trajectories thanks to the

consideration of priority classes (Fauré et al. 2006). This drives us to discuss the intro-

duction of such priorities in our models of regulatory networks in Sect. 4. Another

interesting point of the logical framework is the establishment of the relationships between

the occurrence of regulatory circuits and specific dynamical properties (see Thieffry 2007

and references therein). In Sect. 5, we recall how regulatory structures relate to multi-

stationarity and oscillatory behaviours. The determination of functionality contexts is

explained and its transposition in the context of PN representation of logical regulatory

graphs is discussed. All these concepts are illustrated by a biological application dealing

with a simplified model of the control of T lymphocyte activation and differentiation. The
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paper ends with a discussion of future prospects regarding the use of Petri nets for the

modelling and analysis of complex biological regulatory networks.

2 Multi-valued logical modelling of regulatory networks

Regulation refers to the molecular mechanisms responsible for changes in concentration or

activity of a functional product. Such mechanisms range from transcriptional regulation to

protein modifications (Alberts et al. 2008). Regulation functions (or response functions)

are usually represented by sigmoid or step functions (Thomas and D’Ari 1990). It is then

assumed that the regulatory effect becomes noticeable when the level of the regulator

reaches a given threshold. Hence it makes sense to consider regulatory networks as discrete

event systems. In this context, we rely on the logical modelling of regulatory networks

introduced by Thomas and co-workers (Thomas 1991; Thomas et al. 1995; Chaouiya et al.

2003). In this framework, a discrete variable is associated to each regulatory component to

represent its qualitative levels of expression (for a gene) or of activity (for a protein), and

logical rules define the behaviours of the regulatory components as functions of the levels

of their regulators.

Definition 1 A logical regulatory graph (LRG) is a directed labelled multigraph1 R ¼
ðG;Max; E;H;KÞ where,

• G ¼ fg1; . . .; gng is the set of nodes, representing genes (or, more generally, regulatory
components).

• Max : G ! N
� associates a maximum level2 MaxðgiÞ ¼ Maxi to node gi. In the

sequel, xi denotes the current level of gi (xi 2 f0; . . .;Maxig), a state of the system is

thus given as a vector x ¼ ðxiÞi¼1;...;n:
• E is a finite multiset of ordered pairs of elements of G representing regulatory

interactions. If Maxi [ 1, gi may have different effects onto a component gj, depending

on level xi. Hence, the arc connecting gi to gj may be a multi-arc encompassing

different interactions. The multiplicity of the arc (gi, gj) (i.e. the number of its

constitutive interactions), is denoted mi,j (1 B mi,j B Maxi). Loops (even multi-loops)

are allowed: an arc (gi, gi) denotes a self-regulation of gi.

• H is a labelling function, which associates a threshold to each element of E. More

precisely, hi,j,k is associated to the kth interaction between gi and gj (denoted (gi, gj, k),

k [ {1,. . ., mi,j}), with 1� hi;j;1\ � � �\hi;j;mi;j
¼ Maxi. This interaction is active, when

xi, the level of its source gi lays between the threshold of this interaction and that of the

next interaction: hi,j,k B xi \ hi,j,k?1 (by convention, hi;j;mi;j
þ 1 ¼ Maxi þ 1). In other

words, the interaction (gi, gj, k) is active in all states x for which hi,j,k B xi \ hi,j,k?1.

For each gj 2 G, Reg(j) denotes the set of its regulators: gi [ Reg(j) if and only if

ðgi; gjÞ 2 E.

• K ¼ ðK1; . . .;KnÞ defines the logical rules attached to the nodes specifying their

behaviours: each Ki is a multi-valued logical function that gives the target value of gi

(the value to which gi should tend), depending on the interactions acting on gi at any

state:

1 Multigraphs are also called pseudographs.
2
N
� is the set of non-zero natural numbers.
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Ki :
Y

gj2RegðiÞ
f0; . . .;mj;ig

0
@

1
A! f0; . . .;Maxig:

Later on, when adequate, gi will be denoted by i and (i, j, hi,j,k) will stand for interaction

(gi, gj, k). Also for convenience, since we work in a discrete framework, we will use the

notation [a, b] to represent the integer interval {a,. . ., b} (a; b 2 N; a� b).

Note that the biologists often consider two types of interactions: activations have a

positive effect on their targets, whereas repressions have a negative effect on their targets.

However the actual effect of an interaction may depend on the presence of co-factors; its

sign may even change depending on the context. In any case, the interactions and their

signs can be derived from the logical functions.

We represent the behaviour of a LRG by a state transition graph, where nodes corre-

spond to states (i.e. vectors encompassing the levels of the regulatory components),

whereas arcs denote transitions between states. This graph is computed using the functions

which indicate the transitions leading from the current state to its potential successor states

(see Definitions 3 and 4). Here, we consider an asynchronous updating, where each

transition corresponds to a change of a unique variable (see Chaouiya et al. 2003 for

further details). This choice may lead to non-deterministic behaviours.

Definition 2 A state x of the LRGR is a n-tuple (x1,. . ., xn) of the levels of the regulatory

components. The set of all potential states (or state space) is denoted by

S ¼
Qn

i¼1½0;Maxi�:

From Definition 1 it follows that a state x 2 S fully determines, for each gi, the set of

active incoming interactions (hence there is no memory of past states). The next definition

specifies the behaviour of each regulatory node as a function defined on the state space S.

Definition 3 Given a LRGR ¼ ðG;Max; E;H;KÞ, the dynamics of gi 2 G is defined by:

FKi : S �! ½0;Maxi�

x 7!Ki

Xmj;i

k¼1

k1½hj;i;k ;hj;i;kþ1½ðxjÞ
 !

j2RegðiÞ

0
@

1
A;

where 1 denotes the indicator function.

In the rest of the paper, to simplify the notations and because of the unique corre-

spondance between Ki and FKi , we will refer to the dynamics as Ki.

Remark 1 For all gi 2 G, the dynamics Ki only depends on the values of xj for j [ Reg(i).
In other words, KiðxÞ ¼ Kiðx0Þ, for all x; x0 2 S such that 8j 2 RegðiÞ, xj ¼ x0j:

Definition 4 Given a LRG R ¼ ðG;Max; E;H;KÞ and a set of initial states Init � S, the

(asynchronous) state transition graph ðSInit; T Þ is the (finite) directed graph defined as

follows:

• 8x 2 Init, x 2 SInit,

• 8x 2 SInit, 9ij KiðxÞ 6¼ xi ) x0 2 SInit s.t. ðx; x0Þ 2 T and:
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x0j ¼ xj 8j 6¼ i;
x0i ¼ xi þ 1 ifKiðxÞ[ xi;
x0i ¼ xi � 1 ifKiðxÞ\xi:

8
<

: ð1Þ

In other words, given a state x, the level of each gi tends toward the target value given

by KiðxÞ. If this is greater (resp. lower) than xi (the current value of gi), there is a call to

increase (resp. decrease) by one the value of gi, hence a transition towards a new state

having the corresponding updated value for xi.

It is worth noting that one might consider Init ¼ S (as defined in Definition 2) and then

obtain the whole state transition graph, encompassing all potential states and possible

transitions defined by K.

Terminal strongly connected components in the state transition graph denote regions of

the state space where the system is eventually trapped, which we call attractors. These

attractors might be stable states (states with no successor, corresponding to stable patterns

of expressions in a gene regulatory network), or encompass states involved in elementary

cycles or in intertwined cycles (these components indicate stable oscillations of the system,

or yet homeostasis that ensures the maintenance of a certain equilibrium).

Throughout the paper, state transition graphs will refer to the dynamics of LRGs as

defined above, whereas marking graphs will be used in the context of Petri net models.

For several years, we have been developing GINsim (Naldi et al. 2009a), a software

dedicated to the definition and analysis of logical models. Performance considerations led

us to propose the use of Reduced Ordered Multi-valued Decision Diagrams (ROMDDs,

denoted MDDs from now on) to internally represent logical functions (Naldi et al. 2007).

In Garg et al. (2007), decision diagrams were used to represent state transition graphs and

analyse the dynamical properties of Boolean models. In our context, the MDD represen-

tation further facilitates the translation of logical models into Petri nets. In particular, it is

used by GINsim modules exporting logical models into several PN formats.

To apply efficient algorithms for the analysis of our models, the function Ki, which

takes its values in [0, Maxi], is represented in terms of a MDD with the levels xj of the

regulators gj [ Reg(i) as decision variables (Kam et al. 1998; Naldi et al. 2007) (see Fig. 1,

bottom panel). It is possible to further compact this MDD by merging consecutive edges

leading to the same child as explained hereafter.

Following the classical MDD representations, given gi 2 G, for each decision variable xj

that appears in the diagram of Ki, there are Maxj ? 1 outgoing edges, implicitly labelled

with the corresponding value in [0, Maxj]. Edges labelled with consecutive values pointing

towards the same child can be merged into a unique edge, which is then labelled with the

integer interval of these consecutive values. Remaining edges are labelled by intervals

containing a unique value for the decision variable. In the resulting diagram, each decision

path U (from the root node to a leaf labelled vU [ [0, Maxi]) corresponds to a set of

assignments of the regulators gj [ Reg(i) for which the value of Ki is vU:

• If path U encompasses an edge going out the decision variable xj, the set of assignments

of xj equals the label ½/j;/
0
j�( ½0;Maxj� (called the U assignment interval for xj) of the

edge going out the decision variable xj.

• If, along the path U, a decision variable xj does not appear (due to the simplification of

the MDD), it means that KiðxÞ ¼ vU does not depend on xj.
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The use of MDD generally leads to a simplified expression of Ki, but the resulting

diagram and its complexity may vary depending on the ordering of the decision variables

(see e.g. Kam et al. 1998; Fig. 5 for an illustration).

Figure 1 illustrates a logical graph, the function K3 of the node g3, as well as the

decision tree and resulting decision diagrams representing K3. Note that, hereafter, we

sometimes depict MDDs as non-completely reduced decision diagrams to facilitate their

interpretation.

Remark 2 Given a function F : Nn ! N
n, one can recover a LRG with n regulatory

components, the maximal values, the logical rules, the interactions and their thresholds.

Fig. 1 Example of a logical regulatory graph. The top panel displays interactions between three nodes
along with the specification of the thresholds and maximal levels. The middle panel shows the function K3,
which defines the target value of g3 depending on the levels of its regulators g1 and g2 (equivalently,
depending on the combinations of active interactions). Definitions of K1 and K2 are omitted here. The
bottom panel displays the decision tree representing K3, the corresponding reduced decision diagram
(MDD), and, on the right, an illustration of the merging of consecutive edges linked to the same child
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The recovered interactions will all be functional interactions, i.e. interactions with an effect

on the levels of their targets observed through the dynamics F (see Sect. 5 for the notion of

functionality).

3 Petri net representation of logical models

Petri nets consumption/production semantics is well adapted to the representation of

chemical reactions. However, it is less obvious to use the standard PN framework to

represent regulatory mechanisms, where (1) there is no modification of the activity level of a

regulator acting on its target, (2) the absence of a regulator may have an effect on its target.

One could use inhibitory arcs to take into account this last situation, but we aim at proposing

a representation using standard elementary Petri nets to take advantage of their powerful

analysis framework. Because the level of each component in a LRG is bounded, we can use

complementary places instead of inhibitory arcs. In a first step, a rewriting of LRGs into

standard PNs is briefly presented. Next, we define a coloured PN version of this translation.

3.1 Standard Petri net representation

The definition below allows the explicit construction of a Petri net from a LRG, based on

the MDD representation of the dynamics Ki, where edges are labelled by integer intervals.

The resulting Petri net has a behaviour equivalent to that of the original logical model

(Property 1). Further details, basic properties and applications of this PN representation of

LRGs are provided in Chaouiya et al. (2004) for the Boolean case, and in Chaouiya et al.

(2006) for the multi-valued case. Note that the examples presented throughout this section

are not meant to be realistic, but rather to illustrate the rules governing the rewriting and

facilitate the understanding.

Definition 5 Given a LRG R ¼ ðG;Max; E;H;KÞ, we define the corresponding Multi-

valued Regulatory Petri Net (MRPN) as follows:

• For each gi 2 G, there are two places gi and egi that satisfy, for all markings M:

MðgiÞ þMðegiÞ ¼ Maxi; ð2Þ

meaning that egi is the complementary place of gi.

• For gi 2 G, for each path U from the root to a leaf of the MDD representing Ki, at most

two transitions are defined, one accounting for the increasing tendency (denoted tþi;U),

the second accounting for the decreasing tendency (denoted t�i;U). This simplifies when

the leaf is associated with an extreme value (see below). For the considered component

gi, a path U defines assignment intervals of the levels of gj in RegðiÞ: xj 2 ½/j;/
0
j�,

where /j, /0j 2 ½0;Maxj� and /j�/0j:
• Transitions tþi;U and t�i;U are connected to:

– place gj, j [ Reg(i), with a test arc weighted /j,

– place egj , j [ Reg(i), with a test arc weighted Maxj � /0j:

When /j ¼ /0j, from Eq. 2, it suffices to consider only one of these test arcs. If

½/j;/
0
j� = [0, Maxj], the decision variable should be omitted in the reduced MDD, because

all possible values lead to the same result (hence places gj and egj are not connected to tþi;U
nor to t�i;U).

Petri net representation of multi-valued LRGs 733

123



www.manaraa.com

Transition tþi;U is further connected to:

– place gi, with an outgoing arc (increasing the level of gi),

– place egi , with an incoming arc weighted Maxi - vU ? 1 (ensuring that the current

level of gi is less than the target value vU) and an outgoing arc weighted Maxi - vU

(accounting for the decreasing by one of the current marking of this complementary

place).

Symmetrically, transition t�i;U is further connected to:

– place egi , with an outgoing arc (decreasing the level of gi),

– place gi, with an incoming arc weighted vU ? 1 (ensuring that the current level of gi

is more than the target value vU) and an outgoing arc weighted vU (accounting for the

decreasing by one of the current marking).

From the definition above, it follows that, for all gi 2 G and U a path in the decision

diagram associated to Ki, when vU = 0 or vU = Maxi (the value of Ki for this assignment

of the regulators is extreme), only one transition is relevant. Indeed, if vU = 0, transition

tþi;U can be omitted as, by construction, there will never be Maxi ? 1 tokens in place egi .

Similarly, if vU = Maxi, transition t�i;U can be omitted as there will never be Maxi ? 1

tokens in place gi. Figure 2 illustrates the standard PN representation of LRGs.

Remark 3 Regarding self-regulations, in Petri nets, all transitions are meant to represent

events that effectively change the state of the modelled system. If gi is a self-regulator, then

it appears as a decision variable in the diagram of Ki. If U is a path leading to a value vU

and if gi is assigned to value vU (i.e. /i = vU), then no transition will be generated for U.

Figure 3 illustrates this situation.

Property 1 In the state transition graph ðS; T Þ of a LRG R ¼ ðG;Max; E;H;KÞ, there
exists a transition between two states x and x0 iff there exists an enabled transition t in the
associated MRPN defined as in Definition 5 such that M½tiM0 (t is enabled by the marking
M and its firing leads to the new marking M0) with, for all k ¼ 1; . . .n:

MðgkÞ ¼ xk Mð egkÞ ¼ Maxk � xk;

M0ðgkÞ ¼ x0k M0ð egk Þ ¼ Maxk � x0k:

Proof Let consider x; x0 2 S such that ðx; x0Þ 2 T , and let M be the marking of the

associated MRPN such that MðgiÞ ¼ xi; MðegiÞ ¼ Maxi � xi, for all gi 2 G. We show first

that this marking enables a transition that, when fired, leads to a new marking M0 with

M0ðgiÞ ¼ x0i; M0ðegiÞ ¼ Maxi � x0i, for all gi 2 G.

From Definition 4, there exists an i such that xi ¼ x0i � 1 and KiðxÞ 6¼ xi. The state

x determines a unique decision path U(x) in the MDD representing Ki. Recall that if the

decision variable xj has no interval assignment ½/jðxÞ;/0jðxÞ� in the path U(x), places gj and

egj are not connected to the transitions tþi;UðxÞ and t�i;UðxÞ. Let vUðxÞ ¼ KiðxÞ 2 ½0;Maxi�. Then,

1. If 0 B vU(x) \ xi, then MðgiÞ 2 ½vUðxÞ þ 1;Maxi�. Moreover, for all gj [ Reg(i) such

that the decision variable xj is assigned in U(x), we have:

xj ¼ MðgjÞ 2 ½/jðxÞ;/0jðxÞ�;
Maxj � xj ¼ MðegjÞ 2 ½Maxj � /0jðxÞ;Maxj � /jðxÞ�:
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Hence t�i;UðxÞ is enabled (if vU(x) = 0, U(x) also defines a transition tþi;UðxÞ that is not

enabled in M because MðegiÞ 2 ½0; vUðxÞ�).
2. If xi \ vU(x) B Maxi, then MðegiÞð¼ Maxi � xiÞ 2 ½Maxi � vUðxÞ þ 1;Maxi�. Moreover,

for all gj [ Reg(i) such that the decision variable xj is assigned in U(x), we have:

Fig. 2 LRG translations into standard PNs. The top panel displays a component g1 (with 2 levels) that
regulates component g2 (4 levels); K2 is given in the form of a table and the corresponding MDD. When g1

is present, g2 tends to 2, while the basal value of g2 is 1 (i.e. the value of g2 in the absence of its regulator
g1). On the right side, the corresponding MRPN is displayed. For each component, two complementary
places are defined. For each path in the decision diagram of K2, two transitions are defined: e.g., K2ð1Þ ¼ 2
is represented by tþ2;U2

and t�2;U2
. If g1 is marked (g1 at level 1) and g2 not marked (g2 at level 0, 3 tokens in

fg2 ), then tþ2;U2
is enabled and its firing increases the marking of g2; if g1 is marked and g2 has 3 tokens (its

highest level), then t�2;U2
is enabled and its firing decreases the marking of g2. In the middle panel the same

toy example is considered but with K2 taking extreme values. On the right side, the corresponding MRPN is
simpler with only one transition for each situation (tþ2;U1

and t�2;U2
are of no use here). The bottom panel gives

a third example, with a resulting MRPN encompassing one transition for each path leading to extreme values
(U1 and U4), and two transitions for each path leading to the intermediate value 1 (U2 and U3)
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xj ¼ MðgjÞ 2 ½/jðxÞ;/0jðxÞ�;
Maxj � xj ¼ MðegjÞ 2 ½Maxj � /0jðxÞ;Maxj � /jðxÞ�:

Hence tþi;UðxÞ is enabled (if vU(x) = Maxi, U(x) also defines a transition t-i,U(x) that is not

enabled in M because M(gi) [ [0, vU(x)]).

3. When t�i;UðxÞ is fired (vU(x) \ xi),

M0ðgiÞ ¼ MðgiÞ � 1 ¼ xi � 1 ¼ x0i; M0ðegiÞ ¼ MðegiÞ þ 1 ¼ Maxi � xi þ 1 ¼ Maxi � x0i:

4. When tþi;UðxÞ is fired (xi \ vU(x)),

M0ðgiÞ ¼ MðgiÞ þ 1 ¼ xi þ 1 ¼ x0i; M0ðegiÞ ¼ MðegiÞ � 1 ¼ Maxi � xi � 1 ¼ Maxi � x0i:

Reciprocally, let consider a marking M enabling a transition t, and M0 the marking such

that M[t [ M0, then there exists i such that:

M0ðgiÞ ¼ MðgiÞ þ 1 and M0ðegiÞ ¼ MðegiÞ � 1;

or M0ðgiÞ ¼ MðgiÞ � 1 and M0ðegiÞ ¼ MðegiÞ þ 1:

Transition t being enabled by M, for all gj [ Reg(i), the marking of place gj verifies

MðgjÞ 2 ½xt;j;Maxj � x0t;j�, where xt,j is the weight of the test arc connecting t to gj (there

is no arc if xt,j = 0), and x0t;j is the weight of the test arc connecting t to egj (there is no arc

if x0t;j ¼ 0). Recall that M(gj) defines a level xj of the component gj [ Reg(i), hence M
defines a state assignment, in particular it gives the levels of the regulators of gi. Therefore,

from Definition 5, M allows us to recover a path U in the MDD of Ki. The assignment of

any xj along U verifies: /j ¼ xt;gj
: and /0j ¼ x0t;gj

: Moreover, we have (because t is enabled

in M):

t ¼ tþi;U and MðgiÞ ¼ xi� vU � 1 ðarc from egi to t weighted Maxi � vU þ 1Þ;
or t ¼ t�i;U and MðgiÞ ¼ xi	 vU þ 1 ðarc from gi to t weighted vU þ 1Þ:

Therefore, vU = xi and there exists a transition in ðS; T Þ from state x (defined by M) to

state x0 such that 8j 2 G; x0j ¼ xj, and x0i ¼ xi þ 1 if t ¼ tþi;U; x
0
i ¼ xi � 1 if t = t-i,U. h

The MDD representation of K leads to more compact Petri nets compared to those

obtained from decision trees (as in Chaouiya et al. 2006; see Fig. 4 for an illustration).

Fig. 3 Representation of a self-regulation in Petri nets. In the example shown, there is no need to define
transitions for g2 self-maintainance, i.e. transitions related to the paths: U1 = (g1 = 0, g2 = 0) and
U2 = (g1 = 0, g2 = 1)

736 C. Chaouiya et al.

123



www.manaraa.com

Different orderings of the variables in the MDD may generate different reductions.

However, although the number of transitions may vary, it can be proved that the resulting

dynamics (the marking graphs) are isomorph. This leads to the following property.

Property 2 Given a LRG R, two different orderings of the regulatory nodes can lead to
different MRPNs, which have the same dynamical behaviour (i.e. their marking graphs are
isomorph for a given initial state x).

The proof easily follows from Property 1. Figure 5 displays the two MRPNs obtained

from the same LRG, considering different orderings of the variables.

Two invariant properties easily follow from Definition 5. The MRPN corresponding to a

LRG is covered by n P-invariants (n being the number of regulatory components).

Moreover, T-invariants are always defined as pairs of transitions related to pairs of com-

plementary places. These properties can be used as a consistency check of the MRPN. This

leads to the question of a possible reverse transformation, which is not addressed here.

Note that several LRGs might be recovered from a given MRPN (i.e. a PN satisfying

structural constraints such as the P and T-invariants properties). This has been already

emphasized for the Boolean case in Chaouiya et al. (2004). Indeed, if we consider a pair of

complementary places, we have no way to determine which one corresponds to the current

level of the regulatory product (see Fig. 6).

This systematic rewriting has been implemented in our software GINsim (Naldi et al.

2009a). In Chaouiya et al. (2008), the rewriting rules are demonstrated for a multi-valued

Fig. 4 Translations of decision tree versus decision diagram representations of a logical function into
standard Petri nets. Here, we consider a node g3 with two regulators g1 and g2. Top: the decision tree
representing K3 is given with the corresponding MRPN, which encompasses one transition for each path of
the tree (hence four transitions). Bottom: the decision diagram representing K3, leading to three relevant
paths, and thus to three transitions in the derived MRPN
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logical model of the genetic switch controlling the lysis-lysogeny decision in the bacte-

riophage lambda. This and other PN models can be downloaded from the GINsim web site,

as text files in the INA format.

Fig. 5 Effect of decision variable ordering on the structure of the resulting MRPN. Here, we consider a
node g4 with three regulators g1, g2 and g3. On the left, two decision trees are displayed, both representing
K4. On the right, the resulting MRPNs are given. The number of paths in the decision tree determines the
number of transitions in the corresponding MRPN. Here, there is a unique transition for each path since the
values labelling the leaves are 0 or Max4 = 1

Fig. 6 Two different LRGs induced from a single MRPN-like PN. On the left, part of a MRPN is given,
with two pairs of complementary places (p1, p2) and (p3, p4), defining two regulatory nodes A and B. On the
right, the four possible choices for the places representing the current levels of A and B, and the
corresponding decision trees and associated regulatory structures (activation vs. inhibition). For example
(top case), if xA is given by the marking of p1 and xB by the marking of p4, then the network structure
indicates that when xA = 1, if xB = 0 (i.e. M(p3) = 1) transition t1 may fire and increase the level of B. In
other words, this choice denotes a situation where A is an activator of B
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3.2 Coloured Petri net representation

MRPNs might seem complex and the regulatory structures underlying the model are not

easy to visualize. In this section, we present a coloured version of MRPNs, called Coloured

Regulatory Petri Nets (CRPNs), where there is one place for each regulatory component gi,

and one transition governing the evolution of the marking M(gi) (for further details, see

Chaouiya et al. 2006).

Definition 6 A LRG R ¼ ðG;Max; E;H;KÞ can be represented as a Coloured Regula-

tory Petri Net (CRPN), with, for all gi 2 G:

• one place gi containing a unique token, which value is the current level xi of gi

(xi [ [0, Maxi]);

• one transition ti connected:

– to each place gj such that gj [ Reg(i), by tests arcs labelled with the arc expression

xj;

– to place gi, by an incoming arc labelled with the arc expression xi, and by an

outgoing arc labelled with the arc expression:3 xi þ signðKiðxÞ � xiÞ;

• a guard associated to transition ti, to ensure that ti is enabled only if gi is called to

change its current value, hence this guard is defined as xi 6¼ KiðxÞ.

Figure 7 illustrates the CRPN representing the logical regulation of a gene.

A property similar to Property 1 can be stated, equating the LRG state transition graph

to the related CRPN marking graph.

Finally, contrary to MRPNs, a unique LRG can be recovered from a given CRPN.

4 Introducing priorities

For specific initial conditions, the asynchronous dynamics of realistic regulatory graphs

often leads to huge numbers of states. In the logical framework, as introduced in Sect. 2,

we consider asynchronous updatings for the definition of state transition graphs, which

match the corresponding MRPN marking graphs. Another updating policy frequently

considered consists in applying all updating calls at once (Kauffman 1993). In Steggles

et al. (2007), the authors propose a PN rewriting of Boolean regulatory networks with such

a synchronous updating. Although generating simpler, deterministic state transition graphs,

the synchronous updating often generates spurious behaviours (Thomas 1991). In contrast,

since the asynchronous updating makes no assumption on the delays related to the increase

or decrease orders, the generated dynamics is highly non-deterministic and realistic tra-

jectories are hidden by numerous unrealistic ones. The inclusion of qualitative delays in

logical models has been considered by several authors (e.g. Ahmad et al. 2006; Siebert and

Bockmayr 2006, 2007; Thomas 1991). Siebert and Bockmayr (2007) pointed out that

delays for synthesis or decay of a regulatory product might be context sensitive. Sound

delays are generally difficult to obtain from experimental data. Moreover, other questions

arise in case of preemption: when a process (synthesis or decay) is interrupted for a while,

which delay value should be considered when the process resumes?

3 For x 2 Z; signðxÞ ¼ þ1 if x [ 0, - 1 if x \ 0, 0 otherwise.
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To circumvent these difficult questions, we chose a simple strategy consisting in sorting

trajectories through the introduction of priority classes (Fauré et al. 2006). This possibility

has been introduced in GINsim by allowing the user to group components into different

classes, and to assign a priority level to each of these classes. In case of concurrent

transition calls, GINsim only updates the component(s) belonging to the class with the

highest ranking. For each regulatory component class, the user can further specify the

desired updating assumption (synchronous or asynchronous), which then determines

the treatment of concurrent transition calls inside that class. When several classes have the

same ranking, concurrent transitions are treated under an asynchronous assumption (no

priority). Moreover, similarly to the definitions of transitions t? and t- in Definition 5, one

can distinguish between increasing and decreasing tendencies when updating node levels.

In biological terms, increasing (respectively decreasing) tendencies generally correspond

to synthesis (respectively degradation) processes. GINsim further enables the distinction

between these two types of updatings.

Introduction of priorities in MRPNs is straighforward, if we only consider asynchronous

classes. Taking into account asynchronous classes in a MRPN simply consists in defining a

priority function that assigns a positive integer to each transition defining its priority level

(Marsan et al. 1994). As priorities restrict the enabling of transitions, it is clear that the

marking graph of the prioritised model is a subgraph of the marking graph of the original

model. Hence, we must be aware that the introduction of priorities in a model may affect

the reachability of attractors, and may even result to additional or modified attractors.

Figure 8 illustrates how prioritisation may affect the configuration of attractors.

The use of priority classes eases the analysis of large regulatory networks (see, e.g.,

Sánchez et al. 2008). Priorities can be set on the basis of biological knowledge. Hence, the

paths lost in the marking graphs are arguably not realistic. It could be interesting to define

subtler classes, for example depending not only on the sign of the update, but also on the

combination of interactions leading to this update. In this case, it would be necessary to

impede the automatic simplification of the MRPN (as in Fig. 4), because this amounts in

grouping several situations, which could then belong to distinct priority classes.

Fig. 7 Coloured Petri net representation of a LRG. In the simple case depicted here, the unique transition t2
that governs the behaviour of g2 is connected to the regulators of g2 by test arcs, which read the current
values of g1 and g3. A guard associated to t2 ensures that the current level of g2 (x2) is different from its
target value K2ðxÞ. When t2 is enabled, it increases or decreases the value x2 by one (according to the
comparison of x2 and K2ðxÞ). See Fig. 2, bottom panel, for a ‘‘flat’’ (MRPN) version of this model
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5 Feedback circuits and functionality context analysis

For complex regulatory networks, R. Thomas enunciated several rules binding the

dynamical behaviour to the presence of specific types of regulatory circuits. More pre-

cisely, he has conjectured that a necessary condition for multistationarity is the presence of

a positive circuit (i.e., containing an even number of inhibitions), whereas a necessary

condition for homeostasis and/or sustained, stable oscillations is the presence of a negative

circuit (with an odd number of inhibitions), cf. Thieffry (2007), Thomas and D’Ari (1990),

Thomas et al. (1995) and references therein. These rules inspired several theorems refering

to different frameworks (see Remy et al. 2006a; Richard and Comet 2007; Soulé 2006 and

references therein).

However, the presence of a regulatory circuit is not sufficient to enable the corre-

sponding dynamical property. The simple example presented in Fig. 9 illustrates this point.

When g3 is present (x3 = 1), the negative circuit involving g1 and g2 induces a cycle in the

state transition graph; when g3 is absent (x3 = 0), the cyclic behaviour disappears: the

circuit is no longer functional. A circuit is said to be functional if it does generate

homeostasis in the case of a negative circuit, or multistationarity in the case of a positive

circuit. In Naldi et al. (2007), we associated a functionality context to each circuit of a

regulatory graph. When a circuit is embedded in a regulatory graph, its (external) inputs

may annihilate the expected property (as illustrates in Fig. 9). The functionality context of

Fig. 8 Effect of prioritisation on the dynamics. The top left panel shows a LRG with the specification of
two priority classes: all updating calls for g1 and g2 have a higher priority (p1 = p2 = 1), g3 has a lower
priority (p3 = 2). The top right panel displays the corresponding MRPN, and transition t3

? that has a lower
priority is greyed out. The marking graph is given in the bottom panel, generated from the initial state
(0, 0, 0). If priorities are implemented, the dynamics is restricted to the left-hand cycle, otherwise it will end
up in the rightmost terminal cycle. The transition from the first cycle to the terminal cycle is only possible
through t3

?, which is always in conflict with another transition with a higher priority. However, the right
hand cycle is still an attractor for the prioritised model, if one considers an initial marking in this cycle
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a circuit defines constraints on the levels of external regulators of the circuit enabling the

circuit to be functional.

In what follows, we propose a formal definition for regulatory circuits and their func-

tionality contexts along with a method to determine these contexts.

Definition 7 A circuit C ¼ fðil; ilþ1; hl;lþ1Þ; l ¼ 1; . . .; kg of a regulatory graph R ¼
ðG;Max; E;H;KÞ is a subgraph such that fi1; . . .; ikg 2 G and ðil; ilþ1; hl;lþ1Þ 2 E for

l = 1,. . .k with the convention k ? 1 = 1.

The following definition formalises the notion of functionality of an interaction within a

regulatory circuit.

Definition 8 An interaction (il, il?1, hl,l?1) of a circuit C is functional if and only if there

exists x 2 S with xil ¼ hl;lþ1 � 1 and x0 2 S with x0il ¼ hl;lþ1 and x0k ¼ xk for all k = il, such

that:

Fig. 9 Functionality context of regulatory circuits. An example of positive circuit is displayed on the left,
along with a negative circuit on the right. For each case, the upper-left panel displays the circuit and the
table defining K1 and K2. The state transition graph in presence (resp. absence) of g3 is shown in the upper-
right (resp. middle-right) panel. The bottom panels show the decision trees representing the functions Ki and
their use to determine the functionality context of the circuit. For example, the functionality context of the
interaction (1, 2, 1) within the circuit is determined from the decision tree of K2 by comparing the values of
leaves reached from x1 = 0 (absence of g1) with those reached from x1 = 1 (illustrated by the dotted lines
below the trees). In both circuits, the interaction (2, 1, 2) is always functional. The interaction (1, 2, 1) is
functional within the circuit only in the presence of g3. Indeed, K2ð0; 0Þ ¼ 0 and K2ð1; 0Þ ¼ 1: even if g1

has a positive effect on g2, in the absence of g3, this effect is not sufficient to make g2 cross the threshold of
the next interaction. The context of the whole circuit is then obtained by combining those of the individual
interactions. The state transition graphs are consistent with these results: for the positive (resp. negative)
circuit, multistability (resp. oscillations) appears only for x3 = 1. Attractors (stable states and attracting
cycles) are emphasized in grey
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Kilþ1
ðxÞ\hlþ1;lþ2�Kilþ1

ðx0Þ;
or Kilþ1

ðx0Þ\hlþ1;lþ2�Kilþ1
ðxÞ:

Definition 8 establishes that the interaction (il, il?1, hl,l?1) is functional provided its

activity affects the activity of the following interaction of the circuit (going out il?1). This

depends on the values of Klþ1, considering values hil;ilþ1
� 1 and hil ;ilþ1

for il and all

possible values of other regulators of il?1.

We can then define the sign of an interaction: when the increase of the source across its

threshold drives an increase (resp. decrease) of the target across the threshold of the

following interaction, the interaction is functional and positive (value ? 1) (resp. negative,

value - 1), otherwise the interaction is not functional (value 0).

From Definition 8, one can determine the set of assignments for the regulators of il?1

(except for il) for which the interaction (il, il?1, hl,l?1) is functional (its sign is not 0). This

gives the context of functionality of the interaction.

Definition 9 The functionality context of a circuit C is given by the intersection of the

functionality contexts of its interactions.

Note that if the functionality context is empty, then the circuit is not functional.

In Naldi et al. (2007), we define a logical function that yields the sign of the interaction

targeting il?1. This function is again represented as a MDD and is obtained from the logical

function Klþ1. The functionality context of a circuit is defined as the intersection of the

contexts of its constitutive interactions. Hence, combining the functionality conditions of

all the interactions of a circuit in a logical conjunction, we obtain the functionality context

of the whole circuit.

Summarising, the computational method given in Naldi et al. (2007) allows the

determination of the functionality contexts (and signs) of a circuit (notice that, depending

on the values of its regulators, the sign of a regulatory circuit might change). The procedure

involves two steps:

• the determination of the sign of each interaction, using decision diagrams,

• the computation of the product of these values by combining these MDDs.

In the resulting decision diagram, the paths leading to non-zero leaves define the

functionality context of the circuit.

In Remy et al. (2006b), we defined how to determine, in Boolean Regulatory PNs

(BRPNs), the functionality contexts of regulatory circuits. The method relies on the

comparison of the effects of relevant pairs of transitions along the circuit. This comparision

is performed by analysing the matrices Pre and Post of the net (see Sect. 6 for an illus-

tration). The proposed procedure is based on the analysis of large matrices and, more

important, is only valid for Boolean models. Its extension to the multi-valued case is not

straighforward. However, this seminal work inspired the principles driving the computa-

tional method mentioned above, which is based on MDDs manipulations. Hence, currently

we analyse the functionality contexts of regulatory circuits in the logical framework, using

the MDD representation of the logical functions. The algorithm has been implemented into

GINsim and efficiently determines the circuit functionality contexts for large LRGs

(including multi-valued cases). In principle, this algorithm could be adapted to the analysis

of regulatory circuits in CRPNs as a unique transition is associated to each regulatory

component carrying its logical function.
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6 Biological illustration: a simplified qualitative model for T cell activation
and differentiation

6.1 Logical model

T lymphocytes play a central role in the regulation of the adaptive immune response. Early

differentiation steps in the thymus lead to a pool of antigen-naive T helper cells (denoted

Th0), displaying different antigen-specific T Cell Receptor (TCR). Once in the periphery,

when a Th0 cell encounters a matching antigen (displayed by an antigen presenting cell),

the activation of the TCR receptor triggers a cascade of events ultimately leading to the

activation of the cell and cell differentiation. Th0 cells can then differentiate into Th1 or

Th2 subtypes, which enhance different (cellular vs. humoral) immune responses. To

illustrate the definitions and methods introduced above, we introduce a model (see Fig. 10)

integrating two recently published models. The first of these models encompasses 45

components transducing the signals received by the TCR and two co-receptors on the cell

membrane down to transcription factors in the nucleus (Klamt et al. 2006). Involving 17

components, the second model focuses on the control of the differentiation of Th0 cells

into Th1 vs. Th2 subtypes, characterised by the activation of Tbet and the secretion of

IFNc, versus the activation of GATA3 and the secretion of IL4, respectively (Mendoza

2006). These two models share only two components (TCR and NFAT) and can thus be

easily coupled using the logical formalism. The coupled model was then reduced (in part

automatically with a novel GINsim prototype, in part manually). We retained only eight

Fig. 10 Reduced logical model for T cell activation and differentiation. On the left, the regulatory graph is
displayed. Blunt arrows denote inhibitions while regular ones denote activations. Circled components are
represented by Boolean variables, while rectangular boxes emphasise ternary components. Interaction
thresholds are specified on the drawing if different from 1 (1, 2 denote two thresholds for multi-arcs). The
table on the right gives the logical rules for each component of the model. For the sake of readability, the
logical functions are displayed as logical statements, using the classical connectors (:;^;_ denoting NOT,
AND and OR operators, respectively). TCR stands for TCR = 1, Tbet1 and Tbet2 stand for Tbet = 1 and
Tbet = 2, respectively (the same for remaining variables). The rules are given for the non-zero target values
(target value is 0 for the complementary statement)
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interacting components (out of 60), selected to preserve the main dynamical properties of

the original models:

• the transient oscillations of ZAP70 and cCbl upon T cell activation;

• the coexistence of four stable states accounting for different T cell populations.

For proper parameterisation, this logical model has four stable states, corresponding to

the following cell types:

• Th0: all components are inactive;

• Th1: Tbet and IFNc are active at medium level (1);

• Th1*: Tbet and IFNc are active at their highest level (2);

• Th2: GATA3 and IL4 are active.

Starting from the Th0 state, a transient activation of the TCR leads to a transient

activation of NFAT. Under constant TCR activation, the level of NFAT oscillates with that

of ZAP70, which is involved in a negative circuit with cCbl. The activations of IFNc and

IL4 are coupled to that of NFAT. These two cytokines in turn control the activation of Tbet

and GATA3. Self-regulations and cross-inhibitions of these transcription factors constitute

the switch enabling a stable differentiation of Th1 and Th2 subtypes.

The model encompasses 11 regulatory circuits. Five of these circuits play crucial roles:

• The negative circuit involving ZAP70 and cCbl is functional when the TCR is active.

In this context, it triggers oscillations of the activity levels of these two components,

further driving oscillations of downstream targets.

• The positive, cross-inhibitory circuit involving GATA3 and Tbet is functional in the

presence of IFNc and IL4. This circuit prevents the cell from reaching a chimeric state.

• The positive circuit involving GATA3 is functional in the absence of Tbet and IL4.

• The positive circuit involving medium Tbet is functional in the absence of GATA3 and

IFNc.

• The positive circuit involving high Tbet is functional in the absence of GATA3 and for

low or medium IFNc.

The auto-regulations of GATA3 and Tbet enable the memorisation of their activation

(maintenance) above the corresponding thresholds. However, the coexistence of Tbet and

GATA3 is forbidden by their cross-inhibitory effects, thus leading to four stable states

characterised by the exclusive expression of one of these factors, or yet of none of them.

6.2 MRPN representation

We have generated the MRPN corresponding to the LRG as defined in Fig. 10. It

encompasses 16 places and is covered by 8 P-invariants, which correspond to the 8 pairs of

complementary places (one pair for each regulatory component):

MðIFNgÞ þMð gIFNgÞ ¼ 2; MðTbetÞ þMðgTbetÞ ¼ 2;

MðIL4Þ þMðgIL4Þ ¼ 1; MðGATA3Þ þMð gGATA3Þ ¼ 1;

MðcCblÞ þMðgcCblÞ ¼ 1; MðZAP70Þ þMð gZAP70Þ ¼ 1;

MðNFATÞ þMð gNFAT Þ ¼ 2; MðTCRÞ þMðgTCRÞ ¼ 1:

As previously mentioned, the number of transitions can vary, depending on the ordering

of the variables (see Fig. 5). For example, considering the ordering (IFNc, Tbet, IL4,
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GATA3, cCbl, ZAP70, NFAT, TCR), the MRPN has 28 transitions and 16 T-invariants. In

this case, 7 transitions govern the evolution of Tbet. Now, if we change the ordering to

(GATA3, IFNc, Tbet, IL4, cCbl, ZAP70, NFAT, TCR), the MRPN has 25 transitions and 7

T-invariants, and only 3 transitions governing Tbet evolution. This raises the question of

finding an optimal ordering for each LRG node, seeking a lower number of transitions.

Figure 11 illustrates the part of the MRPN dealing with the regulation of Tbet. Here, we

have two T-invariants: (tþU1
; t�U3
Þ and (tþU2

; t�U3
).

We have checked that, with an initial marking corresponding to a level 1 for TCR and 0

for all other components, the marking graph encompasses 336 markings, including four

dead markings corresponding to the four cellular states described above.

Focusing on the Boolean regulatory circuit between cCbl and ZAP70, we now exem-

plify the determination of functionality contexts (see Fig. 12). First, we apply the method

proposed in Remy et al. (2006b), which applies only in the Boolean case and consists in

comparing the effects of pairs of transitions related to the components involved in the

circuit (see Remy et al. 2006b for further details). The relevant pairs of transitions are

determined from both the matrix Pre (giving the arcs between places and transitions) and

the matrix Post (giving the arcs from transitions to places).

For example, to determine the functionality context of the interaction from cCbl towards

ZAP70, we have to check if it has an effect on ZAP70 for fixed levels of TCR (the only

external regulator of the circuit, acting on ZAP70). For this purpose, we select the pairs of

transitions (t, t0) such that:

1. Pre(ZAP70, t) - Post(ZAP70, t) = 0 and Pre(ZAP70, t0) - Post(ZAP70, t0) = 0:

both t and t0 change the value of ZAP70;

2. Pre(cCbl, t) = Pre(cCbl, t0): t and t0 account for different constraints on cCbl
(presence vs. absence of cCbl);

3. Pre(TCR, t) = Pre(TCR, t0) or PreðgTCR; tÞ ¼ PreðgTCR; t0Þ: t and t0 account for

compatible constraints on TCR.

Fig. 11 Determination of the MRPN representation for Tbet. The left panel gives the MDD for KTbet , which
governs the behaviour of Tbet. Path names label relevant leaves (U1, U2 and U3), whereas leaves
corresponding to situations where Tbet is not called to change (because of its self-regulation) are greyed out.
The right panel illustrates the MRPN obtained for the regulation rules of Tbet, with three transitions
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For such a pair (t, t0), we further check if Post(t, ZAP70) = Post(t0, ZAP70). If it is the

case, the interaction is functional (the effect on ZAP70 is different) for specific values of

TCR (given by the constraint on TCR for both t and t0).
Here, the pair of transitions satisfying the conditions listed above is ðtþU4

; t�U5
) (see bold

elements in the matrices in Fig. 12). Since PreðTCR; tþU4
Þ ¼ 1, the interaction from cCbl

towards ZAP70 is functional in the presence of TCR.

Figure 12 displays the relevant part of the MRPN encompassing the regulatory circuit

between cCbl and ZAP70, subject to a regulation by TCR. The MDDs are given for KcCbl

and KZAP70 and, as in Fig. 9, dotted lines connect the values that must be compared, and the

sign of the interaction is given. This illustrates how the functionality contexts are computed

from the MDDs representing the logical functions. Figure 12 also shows the Pre and Post
submatrices relevant for the analysis of the ZAP70 - cCbl circuit.

7 Discussion

This article reviews a series of results allowing the translation of logical regulatory models

into discrete Petri nets and, thereby, the combination of complementary analytical methods

Fig. 12 Analysis of the ZAP70-cCbl circuit. The top left panel gives the Boolean circuit encompassing
ZAP70 and cCbl in the LRG of Fig. 10. The MDDs associated to functions K are shown. On these MDDs,
we can verify that the interaction from ZAP70 to cCbl is always functional and positive, whereas the
interaction from cCbl to ZAP70 is functional and negative in the presence of TCR (dotted lines join the
situations that have to be compared). The top right panel displays the corresponding MRPN. The bottom
panel shows the submatrices Pre and Post for the three relevant nodes: cCbl, ZAP70 and TCR. Using these
matrices, we can check the functionality context of the interaction from cCbl to ZAP70: we first select
t�U3
; tþU4

and t�U5
, which change the marking of ZAP70. Then, we consider the pair ðtþU4

; t�U5
Þ because these

transitions are differently constrained by cClb and have different effects on ZAP70 (in contrast with the pair
ðt�U3

; t�U5
Þ). Since tþU4

requires the presence of TCR, whereas tþU5
is not constrained by TCR, we conclude that

the interaction is functional in the presence of TCR. The interaction from ZAP70 to cCbl is always
functional. Elements in bold in the matrices allow us to select the relevant pairs of transitions and to
conclude on the functionality of the interactions
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and computational tools (reachability analysis, PN invariants, regulatory circuit analysis,

etc.).

A different rewriting of LRGs into Coloured PNs (CPNs) is proposed in Comet et al.

(2000), which comprises just one place (accounting for the whole state of the LRG) and

one transition (accounting for the dynamics of the LRG). Leaning on this CPN repre-

sentation, the authors further propose a method to automatically generate sets of logical

rules (or logical parameters) compatible with the topology of a regulatory graph and

temporal logic formulae capturing dynamical properties of the corresponding biological

system.

Here, we lean on CPN rewriting to further transpose one of the most original aspect of

the logical modelling method, namely the analysis of the dynamical roles of the regulatory

circuits embedded in complex networks. For a given CRPN, this approach enables the

identification of positive or negative circuits at the basis of multistationary properties or

sustained oscillatory behaviour, respectively. This is facilitated by the fact that in CRPNs,

for each LRG node there is one transition governing its behaviour, contrary to the rewriting

proposed in Comet et al. (2000), where a unique transition accounts for the behaviours of

all the nodes. The proposed method enables the delineation of definite constraints on the

marking of the places. These constraints are derived from the logical rules associated with

the transitions feeding the places involved in a circuit. However, further work is required to

clarify how interconnected circuits can cooperate to generate more complex behaviours.

We have previously shown how the combination of logical and PN formalisms can be

applied to the dynamical modelling and analysis of regulated metabolic pathways (Simão

et al. 2005; see Sackmann et al. 2006 for a complementary approach). In this context, the

circuit analysis delineated here complements existing PN methods (e.g. computation of

dead markings, P- and T-invariants, reachability analysis) to better cope with regulated

metabolic networks, i.e. by providing an abstraction, which is relevant from a dynamical

point of view.

We have illustrated PN rewriting using a simplified logical model for the activation and

differentiation of T lymphocytes. We are currently developing a full-fledged model

encompassing detailed signalling transduction cascades and additional differentiation

pathways. The analysis of the resulting network, which currently involves over 60 regu-

latory components, will clearly benefits from the exploitation of the full set of tools

associated with logical (LRG) and PN frameworks. In particular, adequate model reduction

methods should help to determine important dynamical properties for large networks (cf.

Naldi et al. (2009b) for a first step in this direction, using the logical framework).

Although time is often implicitely considered in logical models, the use of priorities or

time delays enables the specification of temporal constraints associated with concurrent

processes (cf. Sect. 4). In this respect, the PN framework offers a variety of refined

temporisation methods, from the definition of delay intervals to stochastic firing laws (cf.

Li et al. (2007) for an application of timed-PN to model a biological signalling pathway,

and Mura and Csikasz-Nagy (2008) for a SPN modelling the yeast cell cycle control).

The modelling and analysis of complex biological regulatory networks implies the

capacity to handle and combine different levels of abstractions or details, to identify and

compose relevant network modules, and to delineate the associated essential dynamical

properties. Whenever experimental data are sufficiently abundant and precise, qualitative

PN models (or sub-models) can be refined to generate predictive quantitative models,

taking advantage of timed, stochastic, continuous, or hybrid PN versions (cf., e.g.,

Srivastava et al. 2001; Nagasaki et al. 2004; Doi et al. 2006; Li et al. 2007; Mura and

Csikasz-Nagy 2008; Heiner et al. 2008). In this respect, the progressive integration of
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methods transposed from other dynamical modelling frameworks and newly developed

PN analysis tools should ease the definition of hierarchical or modular models (see e.g.

Grafahrend-Belau et al. 2008; Sackmann et al. 2006).
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Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the
control of the mammalian cell cycle. Bioinformatics 22:124–131
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